
ECE 2 Cheatsheet

1 Crystal Structure
There are 3 types of crystals: Crystalline (Single), Polycrystalline, and Amorphous.

1.1 Primitive and Unit Cell
A unit cell is a small volume of a crystal that can be used to represent the entire crystal. The
primitive unit cell is the smallest cell that can do this.

Every point can be found using the vector r̄ = pā+ qb̄+ sc̄

1.2 Basic Crystal Structure
Miller indices are given by

(
1

p
,
1

q
,
1

s
) · LCM(p, q, s)

Area of each cell

(100) = a2, (110) =
√
2a2, (111) =

√
3

2
a2

2 Quantum Mechanics
2.1 Wave Particle Duality
de Broglie wavelength

λ =
h

p

2.2 Uncertainty Principle
The more we know about one aspect of particle the less we know about another

∆x∆p ≥ h̄

∆E∆t ≥ h̄
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2.3 Schrodinger’s Equation

− h̄2

2m
· ∂

2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) = jh̄

∂Ψ(x, t)

∂t

We can also say Ψ(x, t) = Ψ(x)Φ(t). The equation then becomes

− h̄2

2m

1

Ψ(x)

∂2Ψ(x)

∂x2
+ V (x) = jh̄

1

Φ(t)

∂Φ(t)

∂t

Ψ(x) and ∂Ψ(x)/∂x must be finite, single-valued, and continous. Looking at only the time
dependent part of the equation we can set the whole thing equal to a constant η that is equal
to the total energy of the particle. We get an equation that is just oscillating in time.

η = jh̄
1

Φ(t)

∂Φ(t)

∂t

Φ(t) = e−j(η/h̄)t = e−jωt

Then we are also able to get the time-independent Schrodinger equation.

∂2Ψ(x)

∂x2
+

2m

h̄2
[E − V (x)]Ψ(x) = 0

2.3.1 Free electron

V (x) = 0.
Ψ(x) = A exp(jkx) +B exp(−jkx)

Where k ≡
√
2mE
h̄

2.3.2 Infinite Potential Well

Ψ(x) =

√
2

a
sin knx

k2n =
2mEn

h̄2
=

n2π2

a2

E = En =
h̄2n2π2

2ma2

Where a is the width of the potential well.

2.3.3 Step Potential Function

At x = 0 there is a finite step potential to an energy barrier. Region I has 0 potential while
Region II is at V0.

Ψ1(x) = A1e
jkx +B2e

−jkx

Ψ2(x) = A2e
−k2x +B2e

k2x

where

k2 =

√
2m(V0 − E)

h̄2

Plugging in for all boundary conditions and ensuring the wave function is finite and continuous
we get that

Ψ2(x) = A2e
−k2x
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We also find that

B1 =
−k2 + 2jk1k2 − k21

k22 + k21
·A1

A2 =
2k1(k1 − jk2)

k22 + k21
·A2

The reflection coeffient is also found

R =
B1B

∗
1

A1A∗
1

=
(k22 − k21) + 4k21k

2
2

(k22 + k21)
2

2.3.4 Potential Barrier

3 solutions for region I, II, and III.

Ψ1(x) = A1e
jk1x +B1e

−jk1x

Ψ2(x) = A2e
k2x +B2e

−k2x

Ψ3(x) = A3e
jk1x +B3e

−jk1x

where

k1 =

√
2mE

h̄2

k2 =

√
2m

h̄2
(V0 − E)

Transmission is given by

T ≈ 16
E

V0
(1− E

V0
)e−2k2a

2.4 Energy of electron (Hydrogen Model)

En =
−m0e

4

(4πϵ0)22h̄
2n2

If n is bigger then the energy is less negative meaning its easier to remove an electron.

3 Quantum Theory of Solids
3.1 Kronig Penney Model

Ψ(x) = u(x)ejkx

Where u(x) is a periodic step function. Plugging it back in and solving for the boundary
conditions you get

P ′ sinαa

αa
+ cosαa = cos ka
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3.2 Density of States

gT (k)dk =
πk2dk

π3
a3

Convert this to in terms of energy using k2 = 2mE
h̄2

gT (E) =
4πa3

h3
(2m)3/2

√
E

N =

∫ E

E0

gT (E)dE

For the conduction and valence band

gc(E) =
4π

h3
(2m∗

n)
3/2

√
E − Ec

gv(E) =
4π

h3
(2m∗

p)
3/2

√
Ev − E

3.3 Effective Mass
Fext = m∗a

1

h̄2
d2E

dk2
=

1

m∗

a =
−eE

m∗
n

3.4 Probabiltiy and Density Distribution
The Fermi-Dirac distribution is given by

fF (E) =
1

1 + exp(E−Ef
kT )

Maxwell-Boltzmann Approximation

fF (E) = exp[
−(E − Ef )

kt
]
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4 Semiconductors in Equilibirum
n(E) = gc(E)fF (E)

p(E) = gv(E)(1− fF (E))

The equilibrium concentration of electrons in CB is

no = Nc exp[
−(Ec − Ef )

kt
]

Nc ≡ 2(
2πm∗

nkT

h2
)3/2

Holes:

po = Nv exp[
−(Ef − Ev)

kt
]

Nv ≡ 2(
2πm∗

pkT

h2
)3/2

Nc can be found using this relationship for different temperatures

N ′
c = Nc(

T

300
)3/2

4.1 Intrinsic Carrier Concentration

ni = Nc exp[
−(Ec − EFi)

kT
] = no

pi = Nv exp[
−(EFi − Ev)

kT
] = po = ni

nipi = n2
i = NcNv exp[

−Eg

kT
]

nopo = n2
i

The fermi level is given by

EFi = Emidgap +
3

4
kT ln(

m∗
p

m∗
n

)

4.2 Extrinsic Semiconductor
If we already know EFi and ni it may be easier to use

n0 = ni exp[
EF − EFi

kT
]

p0 = ni exp[
−(EF − EFi)

kT
]
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4.3 Donors and Acceptors
The concentration of electrons occupying the donor level is given by

nd =
Nd

1 + 1
2 exp(

Ed−Ef

kT )

Where Nd is the concetration of donor atoms. The concentration at the donor level can also be
expressed as

nd = Nd −N+
d

Where N+
d is the concentration of ionized donors. We can do the same thing for acceptors.

pa =
Na

1 + 1
g exp(

Ef−Ea

kT )
= Na −N−

a

Where 1/g = 1/2. In the case Ed − Ef ≫ kT

nd ≈ 2Nd exp[
−(Ed − Ef )

kT
]

5 Charge Neutrality
We have a compensated semiconductor where both nd and na are in the same region. Then net
charge density = 0.

n0 +N−
a = p0 +N+

d

n0 + (Na − pa) = po + (Nd − nd)

If we assume complete ionization
n0 +Na = p0 +Nd

The electron concentration can then be determined by

no =
Nd −Na

2
+

√
(
Nd −Na

2
)2 + n2

i

Similarly the holes concentration is

po =
Na −Nd

2
+

√
(
Na −Nd

2
)2 + n2

i

5.1 Position of Fermi Level

Ec − EF = kT ln(
Nc

n0
)

In n-type

Ec − EF = kT ln
Nc

Nd

or for compensated

Ec − EF = kT ln
Nc

Nd −Na

EF − EFi = kT ln
n0

ni

If a semiconductor is fully compensated i.e. Na = Nd then n0 = ni and EF = EFi.
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For p-type

EF − Ev = kT ln
Nv

po

EF − Ev = kt ln
Nv

Na

EFi − EF = kT ln
p0
ni

6 Carrier Transport
The two main sources of the movement of charge is drift and diffusion. The equations describing
drift are

Jdrf = ρvd

F = eE = m∗
cpa

We encapsulate everything in a mobility constant so then our equation becomes

J = e(µnn+ µpp)E

This mobility is given by

µp =
e

m∗
cp

τcp

µn =
e

m∗
cn

τcn

Where τ is the main collision time. The two main impedances to movement is impurity and
lattice scattering which can be represented with the equation

1

µ
=

1

µI
+

1

µL
.

6.1 Conductivity
We can simply find the conduvivitiy from the drift equation

J = e(µnn+ µpp)E = σE.

Giving us the equation for resitivity as well

ρ =
1

σ
=

1

e(µnn+ µpp)
.

In the case of complete ionization it is often written just as a function of the majority carriers

σ ≈ eµpNa ≈ 1

ρ
.

6.2 Carrier Difussion
Diffusion is the other source of current in a semiconductor.

J = evthl
dn

dx

We turn this into a constant

Jn|dif = eDn
dn

dx

Jp|dif = eDP
dp

dx

We can combine all of these contributing factors to current into one equation

J = eDn∇n− eDp∇p+ eµnnE + eµppE.
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6.3 Impurity Distribution
When we have nonuniform doping we can find the E field to be

Ex = −
(
kT

e

)
1

Nd(x)

dNd(x)

dx

which also then gives us the Einstein relation

Dn

µn
=

Dp

µp
=

kT

e
.

7 Nonequilibrium Processes
7.1 Carrier Generation and Recombination

Gn0 = Gp0 = Rp0 = Rn0

When we have generation and recombination the concentrations become

n = n0 + δn

p = p0 + δp

and we must note that
np ̸= n0p0 = n2

i .

We also then have the equations for excess carriers in n-type

R′
n = R′

p =
δn(t)

τp0

and in p-type

R′
n = R′

p =
δn(t)

τn0
.

7.2 Ambipolar Transport

D′∂
2(δn)

∂x2
+ µ′E

∂(δn)

δx
+ g −R =

∂(δn)

∂t

Where

D′ =
DnDp(n+ p)

Dnn+Dpp

and

µ′ =
µnµp(p− n)

µnn+ µpp
.

If we want to find out how fast charge neutrality is achieved we find the dielectric relaxation
time constant

τd =
ϵ

σ

7.3 Quasi Fermi Level

n0 + δn = ni exp

(
EFn − EFi

kT

)

p0 + δp = ni exp

(
EFi − EFp

kT

)
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8 PN Junction
8.1 Basic Structure

8.2 Zero Bias
The built in voltage is

Vbi =
kT

e
ln

(
NaNd

n2
i

)
= Vt ln

(
NaNd

n2
i

)
and the E field is described by

E =
−eNa

ϵs
(xa + xp) and

−eNd

ϵs
(xn − x).

This then gives us the relationship at the junction must be

Naxp = Ndxn.

We can find for the space charge width

xn =

[
2ϵsVbi

e
(
Na

Nd
)(

1

Na +Nd
)

]1/2
xp =

[
2ϵsVbi

e
(
Nd

Na
)(

1

Na +Nd
)

]1/2
W = xn + xp =

[
2ϵsVbi

e

(
Na +Nd

NaNd

)]1/2
8.3 Reverse Bias
In reverse bias the applied voltage acts in the same direction as the built in voltage

Vtotal = Vbi + VR.

The depletion width then becomes

W =

[
2ϵs (Vbi + VR)

e

(
Na +Nd

NaNd

)]1/2
and

Emax = −
[
2e(Vbi + VR)

ϵs

(
NaNd

Na +Nd

)]1/2
Emax =

−2(Vbi + VR)

W
.
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8.4 Junction Capacitance
The capacitance per unit area is

C ′ =
dQ′

dVR

C ′ =
eϵsNaNd

2(Vbi + VR)(Na +Nd)

1/2

which is equivalent to the standard capacitance equation

C ′ =
ϵs
W

.

8.5 One Sided Junction
If we have one dominant much greater than the other for example Na ≫ Nd the width becomes

W ≈
[
2ϵs
e
(Vbi + VR)

1

Nd

]1/2
Similarly the junction capacitance reduces to

C ′ ≈
[
eϵs
2

Nd

Vbi + VR

]1/2
.

If we have an abrupt junction the following graph applies

8.6 Junction Breakdown
When we reverse bias above a threshold voltage our junction goes into breakdown and an
avalanche effect occurs

VB =
ϵsE

2
crit

2eNB

where NB is the concentration of the low doped region of the one sided junction.

10



8.7 Nonuniformally Doped Junctions

Solving for dE
dx = ρ(x)

ϵs
= eax

ϵs
we find

Φ(x0) = Vbi =
2

3

eax30
ϵs

Subsequently

x0 =

[
3

2

ϵs
ea

(Vbi + VR)

]1/3
C ′ =

[
eaϵ2s

12(Vbi + VR)

]1/3
Where a is the gradient of net impurity concentration.

9 PN Junction Diode
Now we examine diodes in both forward and reverse bias.

The concentration of minority electrons in relation to the majority carriers is

np0 = nn0 exp

(
−eVbi

kT

)
Then by applying a forward bias to this we obtain the minority carrier concentration at the edge
of the depletion region

np = np0 exp

(
eVa

kT

)
pn = pn0 exp

(
eVa

kT

)
11



The minority concentration increases because the potential barrier has been reduced. Using
ambipolar transport we then solve for the excess minority carrier concentrations

δpn(x) = pn(x)− pn0 = pn0

[
exp

(
eVa

kT

)
− 1

]
exp

(
xn − x

Lp

)

δnp(x) = np(x)− np0 = np0

[
exp

(
eVa

kT

)
− 1

]
exp

(
xp + x

Ln

)
where Lp =

√
Dpτp0

Using these quasi fermi levels

np = n2
i exp

(
EFn − EFp

kT

)
9.1 Ideal PN Junction Current
We find the current at the edge of the space charge region

Jp(xn) =
eDppn0

Lp

[
exp

(
eVa

kT

)
− 1

]

Jn(−xp) =
eDnnp0

Ln

[
exp

(
eVa

kT

)
− 1

]
Combining these

J =

[
eDppn0

Lp
+

eDnnp0

Ln

] [
exp

(
eVa

kT

)
− 1

]
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and we define the parameter Js, the ideal reverse bias current, to be

Js =

[
eDppn0

Lp
+

eDnnp0

Ln

]
We can then write the current as

J = Js

[
exp

(
eVa

kT

)
− 1

]

9.2 Short Diode

Jn(x) =
eDnnp0

Wp

[
exp

(
eVa

kT

)
− 1

]
Implies there is no recombination in short region. Minority carrier electron distribution changes
linearly with distance.

9.3 Generation Recombination Currents

R =
CpCnNt(np− n2

i )

Cn(n+ n′) + Cp(p+ p′)

This gives us a new current from the traps

Jgen =

∫ W

0
eGdx =

eniW

2τ0

where τ0 =
τp0+τn0

2 . This leads to a new reverse saturation current

JR = Js + Jgen.

Now in forward bias we have a recombination current

Jrec =

∫ W

0
eRdx =

eWni

2τ0
exp

(
eVa

2kT

)
and the total current is

J = Jrec + JD

JD = Js exp

(
eVa

kT

)
The general formula for current in a diode is given by

I = Is

[
exp

(
eVa

nKT

)
− 1

]
where n is 1 in a high forward bias and 2 in low forward bias.
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9.4 Small Signal Model
We now consider the AC characteristics of our diode We can find the capacitance and resistance
characteristics of our diode given by

rd =
Vt

IDQ
=

Vt

Ip0 + In0

Cd =
1

2Vt
(Ip0τp0 + In0τn0)

creating an equivalent circuit of a resistor and capacitor in parallel.

10 Metal-Semiconductor
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W = xn =

[
2ϵs (Vbi + VR)

eNd

]

C ′ =

[
eϵsNd

2 (Vbi + V R)

]1/2
J = A∗T 2 exp

(
−eΦBn

kT

)[
exp

(
eVa

kT

)
− 1

]
= JsT

[
exp

(
eVa

kT

)
− 1

]
A∗ =

4πem∗
nk

2

h3

Rcontact =

(
kT
e

)
exp

(
eΦBn
kT

)
A∗T 2

11 Important Tables
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11.1 Constants
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