ECE 2 Cheatsheet

1 Crystal Structure

There are 3 types of crystals: Crystalline (Single), Polycrystalline, and Amorphous.
1.1 Primitive and Unit Cell

A unit cell is a small volume of a crystal that can be used to represent the entire crystal.

primitive unit cell is the smallest cell that can do this.
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Figure 1.3 | Two-dimensional representation of a single-crystal
lattice showing various possible unit cells.

Every point can be found using the vector 7 = pa + qb + s¢
1.2 Basic Crystal Structure
Miller indices are given by
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2 Quantum Mechanics

2.1 Wave Particle Duality
de Broglie wavelength

2.2 Uncertainty Principle

The more we know about one aspect of particle the less we know about another
AxAp > h

AEAt > h

The



2.3 Schrodinger’s Equation

K% 0% (x,t) L 0W(x,t)
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We can also say ¥(x,t) = ¥(x)®(¢). The equation then becomes
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U(z)and 0¥(x)/Ox must be finite, single-valued, and continous. Looking at only the time
dependent part of the equation we can set the whole thing equal to a constant n that is equal
to the total energy of the particle. We get an equation that is just oscillating in time.
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Then we are also able to get the time-independent Schrodinger equation.
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2.3.1 Free electron
V(z)=0.
U(z) = Aexp(jkx) + Bexp(—jkz)

Where kK = ¥ 27;”E

2.3.2 Infinite Potential Well

9 2mE, n?m?
kn - h? - a2
h2n2n?
EFE=F,=——+
" 2ma?

Where a is the width of the potential well.

2.3.3 Step Potential Function

At x = 0 there is a finite step potential to an energy barrier. Region I has 0 potential while
Region II is at Vj.

\Ill(a:) = Alejkw + Bgeiﬂm
v, (:E) = Age_kﬁ; + Bgek%t
where
2m(Vp — E)
h2
Plugging in for all boundary conditions and ensuring the wave function is finite and continuous
we get that

ko =

\112(1‘) = A26—k2:p



We also find that

ki + 2jkky — K2

B k2 + k2 '
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The reflection coeflient is also found
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2.3.4 Potential Barrier
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3 solutions for region I, II, and III.
\Ifl(m) = Alejklx + Ble_jkw
\112(37) = Agek}r + Bgeik}r
Us(x) = Agejk1$ + B'g,e_jk“E

where
2mE
M=
2m
ko = ?(Vo - E)
Transmission is given by
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2.4 Energy of electron (Hydrogen Model)
—moet
En= e
(4meg)?2h"n?

If n is bigger then the energy is less negative meaning its easier to remove an electron.

3 Quantum Theory of Solids
3.1 Kronig Penney Model
() = u(z)el*®

Where u(z) is a periodic step function. Plugging it back in and solving for the boundary

conditions you get
,sin aa

P + cos aa = cos ka
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3.2 Density of States
wk2dk
gr(k)dk = = a’
Convert this to in terms of energy using k? = 2%”2E
4a®
gr(E) = ?(27%)3/2\/5
E
N = gr(E)dE
Eo

3.3 Effective Mass

3.4 Probabiltiy and Density Distribution
The Fermi-Dirac distribution is given by

1
fr(E) = -
1 + exp( E M]? f )
Maxwell-Boltzmann Approximation
—(E—F
fr(B) = expl — 21



4 Semiconductors in Equilibirum
n(E) = g.(E) fr(E)
p(E) = go(E)(1 = fr(E))
The equilibrium concentration of electrons in CB is
_(EC — Ef)]
kt
27Tm;‘LkT)3/2
2

no = Neexp|
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Holes:
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N, can be found using this relationship for different temperatures

Do = Nv eXp[
N, =2(

T
Né = Nc(%)?’/2

4.1 Intrinsic Carrier Concentration

o _(EC_EFi) .
nl - NC eXp[ kT ] - nO
— (£ T Ev
pi = Ny eXP[(I;T)] =Do ="y

By,

n;p; = n? = NN, exp| T

2
ToPo = N;

The fermi level is given by

3 my,

4.2 Extrinsic Semiconductor
If we already know Ep; and n; it may be easier to use

no = n; exp[w]
kT
Po =", eXp[—_(EF — EFi)]
kT



4.3 Donors and Acceptors
The concentration of electrons occupying the donor level is given by

Ny
Ng = E—E
1+ %exp( dkT L)

Where Ny is the concetration of donor atoms. The concentration at the donor level can also be

expressed as
ng=Ng— N,

Where N j is the concentration of ionized donors. We can do the same thing for acceptors.

Nq _
Pa = E—B.. = Vo= Ng
1—|—§exp( L)
Where 1/g = 1/2. In the case Eq — Ey > kT
—(Eq— Ey)

ng ~ 2Ngexp| T ]

5 Charge Neutrality

We have a compensated semiconductor where both ny and n, are in the same region. Then net
charge density = 0.

no+ N, =po+ NJ
n0+(Na_pa) :po+(Nd_nd)

If we assume complete ionization
no + Ng = po + Ng
The electron concentration can then be determined by

Ny — N, Ny — N,
nozd2a+\/(d2“)2+n2

)

Similarly the holes concentration is

N, — N, No—N,
i d+\/(a2 )2 402
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Do =

5.1 Position of Fermi Level

N
E.— Ep = kTIn(=%)

no
In n-type
N,
E.— Ep=kTIn Fd
or for compensated
N
E.—Er=kT'n ————
c F n N, — N,

Ep — EFi=kTIn "2

n;

If a semiconductor is fully compensated i.e. N, = Ny then ng = n; and Fr = Ep;.



For p-type
N,
Ep — B, =kTIlnh—
Do

N,
Er — E, = ktlnﬁv

a

Epi — Ep = kTIn 22
n;

6 Carrier Transport
The two main sources of the movement of charge is drift and diffusion. The equations describing
drift are

Jarf = pud

_ _ *
F=eE=mga

We encapsulate everything in a mobility constant so then our equation becomes

J = e(pnn + pupp) E
This mobility is given by

Hp = Tep

Hn = ——Ten
Men

Where 7 is the main collision time. The two main impedances to movement is impurity and
lattice scattering which can be represented with the equation

1 1 1

woopr KL

6.1 Conductivity
We can simply find the conduvivitiy from the drift equation
J =e(unn + ppp)E = oE.
Giving us the equation for resitivity as well
1 1
p = -
o e(unn + ppp)
In the case of complete ionization it is often written just as a function of the majority carriers
1
o= eppNy = —

6.2 Carrier Difussion
Diffusion is the other source of current in a semiconductor.

dn

J = l—

Vth dx

We turn this into a constant

dn
Jn|dzf = eDn%
dp
Jplaig = eDp

We can combine all of these contributing factors to current into one equation

J=eD,Vn —eD,Vp+eu,nk + epppk.



6.3 Impurity Distribution
When we have nonuniform doping we can find the E field to be

B <kT> e i

which also then gives us the Einstein relation

7 Nonequilibrium Processes

7.1 Carrier Generation and Recombination
GnO = Gp(] = RpO = RnO

When we have generation and recombination the concentrations become
n=mng+on
p=po+0p

and we must note that
np # nopo = n.

We also then have the equations for excess carriers in n-type

R = R; _ on(t)
Tp0
and in p-type
R, =R, on(t)
Tn0o
7.2 Ambipolar Transport
0?(6n) d(dn) d(on)
/ / _ _
D e tHbE—s o R="5
Where
by _ DaDyln 1)
Dyn+ Dyp
and
r_ Nnﬂp(p - n)
M+ ppp

If we want to find out how fast charge neutrality is achieved we find the dielectric relaxation
time constant

)

7.3 Quasi Fermi Level

Er, — Ep;
ng + on = n; exp <M>
p0+(5p:n,~exp<




8 PN Junction

8.1 Basic Structure
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8.2 Zero Bias
The built in voltage is

and the E field is described by

—eN, —eN,
¢ % (24 + ) and cd

€s €s

E = (T, — ).

This then gives us the relationship at the junction must be
Nyxp = Ny,
We can find for the space charge width

" e “Ny'N,+ Ny
T, = 268%i(& b ) v
Pl e “N,”'N,+ Ny

2. Vii (N, + N;\ 12
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8.3 Reverse Bias
In reverse bias the applied voltage acts in the same direction as the built in voltage

‘/total = %z + VR-

The depletion width then becomes

o [26 (Vi Vi) (Na + N 1/2
- e N,Ny
and
B o 26(Vbi + VR) N,Ny 1/2
maxr — 68 Na + Nd
(Vi + V;
B, = %



8.4 Junction Capacitance
The capacitance per unit area is

dq’
C' =
dVp
, ees Ny Ny 1/2

' =
2(Voi + VR)(Na + Na)
which is equivalent to the standard capacitance equation
€
c'=_2=.
w
8.5 One Sided Junction
If we have one dominant much greater than the other for example N, > Ny the width becomes

2€,
e

1 1/2

Similarly the junction capacitance reduces to

o [ees N 1/2
T2 Vi + Ve ’

If we have an abrupt junction the following graph applies

Slope = ce.N,
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Figure 7.11 | (1/C')*versus Vi of a
uniformly doped pn junction.

8.6 Junction Breakdown
When we reverse bias above a threshold voltage our junction goes into breakdown and an
avalanche effect occurs

where Np is the concentration of the low doped region of the one sided junction.

10



8.7 Nonuniformally Doped Junctions
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Figure 7.16 | Impurity concentrations of
a pn junction with a nonuniformly doped Figure 7.17 | Space charge density in a
p region. linearly graded pn junction.

Solving for % = 0@ % we find

€s

2 3
@(a0) = Viy = - 200
3 €
Subsequently
3 e, 1/3
To = [ﬁa(vbi + VR)}
o [ eae? ]1/3
12(Vyi + VRr)

Where a is the gradient of net impurity concentration.

9 PN Junction Diode

Now we examine diodes in both forward and reverse bias.
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The concentration of minority electrons in relation to the majority carriers is

—eVii
np() = Npo €Xp LT

Then by applying a forward bias to this we obtain the minority carrier concentration at the edge

of the depletion region
eV,
Np = Npo €XP ﬁ

B o eVy
Pn = Pn0o €XP T
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The minority concentration increases because the potential barrier has been reduced. Using
ambipolar transport we then solve for the excess minority carrier concentrations

eVa Ty — X
5pn(x) = pn(l‘) — Pn0 = Pn0 [GXP <kﬂ_,> — 1:| exp < i >
p

eVa Ty +x
Inp(z) = np(z) — npo = npo [exp <kT> - 1] exp < pL )

Figure 8.5 | Steady-state minority carrier concentrations in a
pn junction under forward bias.
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Figure 8.6 | Quasi-Fermi levels through a forward-biased
pn junction.

Using these quasi fermi levels

2 Epn — Epp
np =n,; exp T

9.1 Ideal PN Junction Current
We find the current at the edge of the space charge region

o 6Dppn0 EVZL

e =52 o (1) -
eD,n eV,

() = P e (S50 <1

eDppno = eDypnyo eV,
= -1
J L + I, exp T

Combining these
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Figure 8.10 | Ideal electron and hole current components through a pn junction under
Figure 8.8 | Ideal /-V characteristic of a pn junction diode. forward bias.

and we define the parameter Js, the ideal reverse bias current, to be

I — [erpng N eDnnpo}
L, L,

We can then write the current as

9.2 Short Diode

eD,n eV
In(x) = Tp(} [exp <kT> — 1]
P

Implies there is no recombination in short region. Minority carrier electron distribution changes
linearly with distance.

9.3 Generation Recombination Currents
CpCpNi(np — n?)
Crn(n+n')+ Cp(p+ 1)

This gives us a new current from the traps

w
en;W
Jg /0 eGdx 57

R =

where 79 = . This leads to a new reverse saturation current

Tp0+Tno
2

Jr = Js + Jgen.

Now in forward bias we have a recombination current
w
eWn,; eV,
Jree = eRdx = e
/0 2 P <2k:T>

J = Jrec"‘JD

Va
Jp = Jsexp <ZT>

The general formula for current in a diode is given by

I=1 [exp (ne;{/a > — 1]

where n is 1 in a high forward bias and 2 in low forward bias.

and the total current is
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Figure 8.19 | (a) A pn junction with an ac voltage superimposed on a forward-biased
dc value; (b) the hole concentration versus time at the space charge edge; (c) the hole
concentration versus distance in the n region at three different times.

Figure 8.18 | Curve showing the concept of the
small-signal diffusion resistance.

9.4 Small Signal Model

We now consider the AC characteristics of our diode We can find the capacitance and resistance
characteristics of our diode given by

Vi W
Ipo-l-fno

Cq (IpOTpO + InOTnO)

1
=57
creating an equivalent circuit of a resistor and capacitor in parallel.

10 Metal-Semiconductor
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Figure 9.12 | Ideal energy-band diagram of a metal-n-type semi ohmic
contact (a) with a positive voltage applied to the metal and (b) with a positive voltage
applied to the semiconductor.
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Figure 9.11 () Energy-band diagram of a metal and

semiconductor before contact; (b) ideal energy-band
diagram of a metal-n-semiconductor junction for ,, > ..

Figure 9.13 | Ideal energy-band diagram (a) before contact and (b) after contact
for a metal-p-type semiconductor junction for b < ¢b.
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Table 1.1 A portion of the periodic table Table 1.2 | A list of some semiconductor

o v v materials
5 6 Elemental semiconductors

B (o} Si Silicon
Boron Carbon Ge Germanium
13 Al 14 si 15 P Compound semiconductors
Aluminum | Silicon Phosphorus AlP Aluminum phosphide
31 2 33 AlAs Aluminum arsenide

Ga Ge As GaP Gallium phosphide
Gallium | Germanium | Arsenic GaAs Gallium arsenide
49 51 InP Indium phosphide

In Sb
Indium Antimony

Table B.4 | Silicon, gallium arsenide, and germanium properties (7' = 300 K)

Property Si GaAs Ge
Atoms (cm?) 5.0 X 10* 442 X 102 4.42 X 10%
Atomic weight 28.09 144.63 72.60
Crystal structure Diamond Zincblende Diamond
Density (g/cm®) 2.33 5.32 5.33
Lattice constant (A) 5.43 5.65 5.65
Melting point (°C) 1415 1238 937
Dielectric constant 11.7 13.1 16.0
Bandgap energy (eV) 1.12 142 0.66
Electron affinity, y (V) 4.01 4.07 4.13
Effective density of states in 2.8 X 10¥ 4.7 X 10V 1.04 X 10"
conduction band, N, (cm™)

Effective density of states in 1.04 X 10" 7.0 X 108 6.0 X 108
valence band, N, (cm™?)
Intrinsic carrier concentration (cm ™) 1.5 X 10" 1.8 X 10° 2.4 X 101
Mobility (cm*/V-s)
Electron, w, 1350 8500 3900
Hole, p, 480 400 1900

Effective mass ( i

Electrons mj = 0.98 0.067 1.64
m =0.19 0.082
Holes my, = 0.16 0.082 0.044
mi,= 0.49 0.45 0.28
Density of states effective mass
Electrons %) 1.08 0.067 0.55
mj,)
Holes (W) 0.56 0.48 0.37
Conductivity effective mass
Electrons %) 0.26 0.067 0.12
my,)
Holes {57~ 0.37 0.34 021
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Table 8.1 | Commonly used terms and notation for this chapter

Term Meaning

N, Acceptor concentration in the p region of the pn junction

N, Donor concentration in the n region of the pn junction

oo = Ny Thermal-equilibrium majority carrier electron concentration in the
n region

Pro = N, Thermal-equilibrium majority carrier hole concentration in the p region

ny0 = /N, Thermal-equilibrium minority carrier electron concentration in the
p region

Do = 1IN, Thermal-equilibrium minority carrier hole concentration in the n region

n, Total minority carrier electron concentration in the p region

DPn Total minority carrier hole concentration in the n region

n,(—x,) Minority carrier electron concentration in the p region at the space
charge edge

Pn(Xn) Minority carrier hole concentration in the n region at the space charge
edge

Excess minority carrier electron concentration in the p region
Excess minority carrier hole concentration in the n region

11.1 Constants
Avogadro’s number

Boltzmann’s constant

Electronic charge
(magnitude)

Free electron rest mass
Permeability of free space
Permittivity of free space

Planck’s constant

Proton rest mass
Speed of light in vacuum

Thermal voltage (T' = 300 K)

N, =6.02 X 10"%
atoms per gram
molecular weight

k=138 X1072J/K
= 8.62 X 107 eV/K

e=160X10""C

my = 9.11 X 10731 kg
wo = 4 X 1077 H/m
€, = 8.85 X 107 F/cm
= 8.85 X 1072 F/m
h=6.625 X 1073 J-s
=4.135 X 107 P eV-s

=fi = 1.054 X 107 J-s

= 1.67 X 107¥ kg
= 2.998 X 10'° cm/s

v, =k = 0.0259 v

kT = 0.0259 eV

h
21T
M
c
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